Bayesian Network Learning with Parameter Constraints
نویسندگان
چکیده
The task of learning models for many real-world problems requires incorporating domain knowledge into learning algorithms, to enable accurate learning from a realistic volume of training data. This paper considers a variety of types of domain knowledge for constraining parameter estimates when learning Bayesian Networks. In particular, we consider domain knowledge that constrains the values or relationships among subsets of parameters in a Bayesian Network with known structure. We incorporate a wide variety of parameter constraints into learning procedures for Bayesian Networks, by formulating this task as a constrained optimization problem. The assumptions made in Module Networks, Dynamic Bayes Nets and Context Specific Independence models can be viewed as particular cases of such parameter constraints. We present closed form solutions or fast iterative algorithms for estimating parameters subject to several specific classes of parameter constraints, including equalities and inequalities among parameters, constraints on individual parameters, and constraints on sums and ratios of parameters, for discrete and continuous variables. Our methods cover learning from both frequentist and Bayesian points of view, from both complete and incomplete data. We present formal guarantees for our estimators, as well as methods for automatically learning useful parameter constraints from data. To validate our approach, we apply it to the domain of fMRI brain image analysis. Here we demonstrate the ability of our system to first learn useful relationships among parameters, and then to use them to constrain the training of the Bayesian Network, resulting in improved cross-validated accuracy of the learned model. Experiments on synthetic data are also presented.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملA Theoretical Framework for Learning Bayesian Networks with Parameter Inequality Constraints
The task of learning models for many real-world problems requires incorporating domain knowledge into learning algorithms, to enable accurate learning from a realistic volume of training data. Domain knowledge can come in many forms. For example, expert knowledge about the relevance of variables relative to a certain problem can help perform better feature selection. Domain knowledge about the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 7 شماره
صفحات -
تاریخ انتشار 2006